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The problem of optimal control of quasilinear systems in the presence of exter- 
nal random while noise-type perturbations is considered, Consecutive approxi- 
mations to the optimal control are obtained and the errors along the trajectory 
and the optimal functional are estimated. 

1. A number of papers in the field of optimal control of stochastic systems which 
have recently appeared deal with the study of controlled systems containing small terms, 
This can be explained, in particular, by the fact that although the basic f~mulations of 
the problems of stochastic control have been known for considerable time [ 1, 23, how- 

ever conclusive results could only be obtained for the linear systems and a quadratic 
functional. A problem arises of constructing an approximate optimal control by expan- 
sion in the terms of a small parameter. For the case when the external perturbationsare 
of low intensity. i. e. when a specified controlled system plays the part of the generating 
system, the problem of synthesizing an approximate control is dealt with in p- 51 where 
it is assumed that the solution of the problem is known, and has been obtained in the form 
of a synthesis. 

Another approach to the problem of approximate synthesis of an optimal control is also 
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possible, and is developed below. In it the role of the generating system is played by a 
linear controlled stochastic system with a quadratic criterion, for which the optimal con- 

trol can be obtained in the explicit, analytic form. Speaking more accurately, in the 

present paper we assume that the controlled system has the form 

Here the vector of the phase coordinates .z (r) belongs to the ~-dimensio~l Euclidean 

space E, , the control % E E,, the Wiener process 5 E E,, the matrices A, B and o 
are given and have measurable elements on the segment [0, I’], the small parameter 

E >, 0, the constant T E 10, co) and the vector a0 E E,. 
The Wiener process E (0 is normalized by the conditions 

I (0) = 0, M (t) = 0, MEiS (t) = t 

where M denotes the mathematical expectation, The matrix o accompanying the 

noise term E in (1.1) is such that uu’, where the prime denotes the partition, is po- 

sitive definite. Finally, we assume that the vector function f (t, 5) E E, is measurable 

over the set of arguments, has a bounded derivative in z and satisfies the conditions 

Here z and x1 denote any vectors from E,, the constants ai ), 0 are specified and I z I 
denotes the Euclidean norm of the vector 2. The control u (t) must be chosen so as to 
minimize the functional 

J (rc) = M [zr (T) L1r (T) + f (2’ (s) Lz (s) z (s) + u’ (s) Id3 (s) I( (s))ds] (1.3) 

0 

where Li are matrices which are specified and have measurable bounded elements, and 
L,, L, are negative definite, while L, (t) is uniformly positive definite on the segment 

(0, TI. 
Under the above assumptions and with the control u (t) = 0 operating, a solution of 

the problem (1.1) exists and is unique [6]. On the other hand, if E = 0, then the solution 

of the problem of optimal control (1. I), (1.3) can be obtained in its explicit analytic 
form. 

Let us cite some formulas fl] which will be needed in what follows. When e = 0 , 
the optimal control u. (1) is 

+, (t) = - Ls-i B’P (t) 5 (t) (1.4) 

where the nonnegative definite square n x n matrix P (t) is a solution of the equation 

P’ (1) = -- P (t) A (t) - A’ (t) P (t) - L, (t) + 1% 5) 
P (t) B (t) Lsl (t) B’ (t) P (t) = 0, P (2’) = L, 

2. Let us denote by 1’ (t, x) the Bellman function of the problem (1.1). (1.3). Ac- 
cording to [8] this function represents the unique solution of the Cauchy problem 
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Here and in what follows we can set A = 0 without any loss of generality. The optimal 
control ZJ (t, x) now becomes 

v (t, z) = - 1/s Ls--l (t) B’ (t) c?V (t, I) / ds (2.2) 

In particular, when E = 0 , the Bellman function v0 (t, Z) becomes, by virtue of [7], 

v. (t, 5) = Z’P (t) x (2.3) 

let us now give the algorithm for constructing the i-th approximation to the optimal 

control. We write V (t, x) in the form L 

V (t, cc) = x 12%~ (1, 2) + ri (t, z) 

i=n 
(2.4) 

Here V, is given by (2.3), the equations for Vj are obtained by substituting (2.4) into 
(2.1) and equating the terms accompanying EJ and not containing ri, and all the re- 

maining terms determine the equation for ri. let us assume that the i-th approxima- 
tion ai (t, z) to the optimal control (2.2) is given 

aI’. 

ui (t, :r) = - +-1.3-l (t) B’ (t) i Ej 2 
i=O 

(2.5) 

TO substantiate the formula (2.5) we must show that the difference 1~ (0, a,) --J (u,) is 

of the order of &‘+I. This is proved for various values of i according to a single scheme 
consisting of constructing two solutions of the system (1. l), one for the control (2.5) and 

the other for the control (2.2), (2.4), and estimating the moment of the difference bet- 
ween these processes. 

We shall elucidate this in more detail using the zero approximation. In this case the 
equation for r0 implies that P,, (t, z) is the Bellman function of the following control 

problem: to find a control o minimizing the functional 
T 

M= \ [w (4 P (t) f (t, Y (t)) + o.f (0 L (t) 0 (t)ldt 
0” 

(2.6) 

on the trajectories y (t) of the system of stochastic differential Ito equations 

dy (t) = [a f (t, y (t)) - B,Py (t) + Bd dt + ad 4 (t) (2.7) 

The existence of a solution of the control problem (2.7), (2.6) follows from the existence 
of the solution of the Bellman equation (2.5). Let us denote by o0 (t, y) the optimal con- 

trol in the problem (2.6), (2.7). By virtue of (2.6) and (2.7) [8] a matrix W (t) bounded 

on [0, Tl exists such that T 
am (h, .x0) 

dX 
= IM 

5 
&' (t) $- [2W ('3 00) f (tr !/ (t, w))l dt 

to 

From this and from [9] it follows that 
1 ho (t, x) / ar 1 < EC (1 + 1 I I) (2.8) 

Thus the optimal control 2, in the problem (1. l), (1.3) differes from the control (1.4) 

by a quantity which increases at ( 5 ) - 00 not faster than a linear function of 1 z I. 

Therefore, taking into account (2. 8) and [6] we conclude that 

1 J (uo) - J (2’) I 4 EC (1 f I a0 12) (2.9) 



Note. Let us substitute x (t, ug) into the control (1.4), and z (t, v) into the optimal 
control, and find the difference between the resulting quantities. Then, following (2.9) 
we can conclude that the mathematical expectation of the square of this difference is 
of the order of es, i, e. in this sense the difference between the optimal control (2.7) 
and the approximate control (1.4) is of the order of e2. 

3, The higher order approximations to the optimal control are determined by the 
formula (2.5). From (2.4) and (2.1) it is obvious that all Vi i & 1 are determined in 
quadratures in terms of the function f, of the previous approximations vj, .i < f - 1 
and of the fundamental solution a (t, z, a, g) of the following linear homogeneous para- 
boli c equation : 

Lop r- 0, Lo-:L-.Xs’P&& 

We can easily show that 

a (t, 2, z, w) = v--&-A exp ( 
1 

- 2 (!j - m)’ D-1 (?, _ nz) 
1 (3. $1 

where zI is the fundamental solution of (2.7) with E = B = o = 0 and A is the deter- 
minant of the matrix D. 

Validity of the higher order approximations to the optimal approximation is substan- 
tiated in the same manner as the validity of the zero ap~oxima~on (1.4). We must 
however also show that avi / 8~ increases with 1 z 1 -+ 00 not faster than a linear func- 
tion of 1 x I and that a’v I &zz increases not faster than some power of I x 1. These 
estimates are obtained for all ap~oximations in the same manner, therefore we shall 
prove their validity for V, only, 

The following equation for the determination of VI is obtained from (2.4): 

LoI/, -+- 2f’Px = 0, v, (T, x) = 0 (3*2) 

From this we can deduce as we did for (2.8). that G’F1 / & increases as some linear func- 
tion of I z 1. XII obtaining an estimate for @VI I Ekc2 we note that by (3.2) and (3.1) the 
function Vr increases with 1 5 1 - 03 not faster than a ~lynomial of second degree in 
1 z I. Therefore, taking into account the inequality given in [lo]. chapt. 3, we have 

1 aav, (2, 5) / CwJ 1 < c 11 + 1 2 121 
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We study the stability of relative equilibrium of a body whose center of mass 
describes a non-Keplerian circular orbit without a center of attraction, under the 

action of perturbing or controlling forces. The problem is solved under a restric- 
ted formulation, in which only the gravitational moments relative to the central 

field are taken into account. Sufficient conditions of stability of the positionsof 
equilibrium obtained are found, using the Routh theorem in the manner analog- 

ous to that developed in Cl]. 

The problem of relative equilibrium of a rigid body in a circular unperturbed orbit 
and its stability, were investigated recently in detail by many authors [ 1, 21. We find 
however, that in certain concrete problems of celestial mechanics and dynamics ofspace 

flights there is a need to generalize this problem to the case of perturbed circular orbits 
which are realized when perturbing or controlling forces are present. An example ofsuch 
a problem is the case of circular non-Keplerian orbits in the gravitational field of an 

axisymmetric planet. The author of [3] has proved, in particular, the existence of circu- 
lar orbits the plane of which is parallel to the equatorial plane of the planet. 

An interesting problem from the point of view of space dynamics is that of setting a 
synchronous stationary satellite (SS) at an arbitrary latitude. The authors of [4, 53 stud- 
ied this problem for the center of mass of the satellite, and [6] dealt with the translation- 
al-rotational motion of such a satellite under the assumption that an additional constant 
reactive force is applied to its center of mass, It was shown that a relative equilibrium 
of a body is possible when its center of mass is in circular motions in a plane that does 

not contain the center of attraction. This problem was not previously investigated. 
The aim of the present paper is to obtain sufficient conditions for the relative equi- 

librium of a rigid body when the formulation of the problem is restricted, i. e. under the 
assumption that the motion of the body relative to the center of mass does not influence 


